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bstract

his review is concerned with ductile particle ceramic matrix composites, which are a group of materials comprising micro- or nano-scale metallic
articles in a ceramic matrix. The most studied materials have an alumina matrix; nickel, iron, molybdenum, copper, and silver are some of the more
requently used metals. In contrast to conventional cermets and composites containing an interconnected metallic phase, the particles are discrete.

he larger particles provide a toughening increment by deforming plastically and bridging an advancing crack. For the nanoscale composites
ignificant improvements in strength have been reported. Improvements in strength and toughness, coupled with changes to elastic properties and
hermal conductivity, have led to improved thermal shock resistance and a consideration of these materials for wear applications.

2007 Elsevier Ltd. All rights reserved.

eywords: Composites; Microstructure-final; Toughness and toughening; Thermal shock resistance; Wear resistance

m
a
i
i
w
t
m
t
m
m
w
b
A
a

�

. Introduction

There are a host of materials which comprise metallic inclu-
ions essentially either within or on a ceramic matrix; however,
he term ‘ductile particle ceramic matrix composite’ is usually
aken to mean a material that has been designed such that the

etal is in the form of inclusions that are isolated from each
ther (rather than forming a continuous network) and which
eform plastically, thereby producing a toughening increment.
lthough there are earlier examples of such composites (e.g.,

ungsten in glass,1 molybdenum in alumina,2 iron, cobalt and
ickel in magnesia,3,4 and nickel and aluminium in glass,5,6) an
ncreasing interest in this group of materials developed in the
ate 1980s and early 1990s, a period during which a number
f allied topics were being explored. There was considerable
ffort being directed towards producing tougher ceramics and
whole range of ceramic matrix composites (CMCs), princi-

ally based on continuous ceramic fibres, were being developed.

longside this there was the development of CMCs produced by
irected metal oxidation, which tended to give materials with a
ontinuous or partially continuous network of a metallic phase.

∗ Tel.: +44 1483 689613; fax: +44 1483 686291.
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When a particulate second phase is introduced into a brittle
atrix, there are several toughening mechanisms that may oper-

te but the maximum benefit is derived from metallic particles
f they are able to deform plastically and bridge an advanc-
ng crack (see Fig. 1). This is easier to achieve in systems in
hich the metallic phase is (partially) continuous e.g. ‘tradi-

ional’ cermets such as tungsten carbide–cobalt and the directed
etal oxidation products. However, it is not always desirable

o have an interconnected metallic phase, hence the develop-
ent of composites containing discrete metallic particles.The
echanism of ductile particle bridging is a crack wake effect
ith an associated process zone so these composites would
e expected to show resistance-curve (R-curve) behaviour.
t steady state, the toughening increment, �Gc, is given

s

Gc = Vf

∫ u∗

0
σ(u) du (1)

here Vf is the area fraction of ductile particles intersected by
he crack plane (usually taken to be equal to the volume fraction

f ductile particles), σ(u) is the stress/stretch relationship for the
etallic particle, and u* is the crack opening displacement when

he metallic particle fails. Scaling the nominal stress, σ, with the
ield stress, σy, and the displacement, u, with a characteristic
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Fig. 1. Schematic diagram of ductile particles bridging an advancing crack.

imension of the metallic phase, r, gives:

Gc = χVfσyr (2)

here χ is the ‘work-of-rupture’ parameter, which depends on
he ductility and work hardening coefficient of the metallic phase
nd the degree of constraint, and is given by

= Vf

∫ u∗/r

0

σ(u)

σy

d
u

r
(3)

rom experiments on lead wires in glass,7 values for χ are
xpected to range from 1 to 6, with the higher values being
ssociated with greater degrees of particle–matrix debonding or
atrix fracture (see Fig. 2).
Thus, the ideal ductile particle CMC comprises metallic par-

icles within a ceramic matrix such that an advancing crack
s attracted to a particle. That particle then debonds partially
rom the matrix, ideally to its polar regions, and deforms plas-
ically, thus absorbing energy and bridging the crack, providing
losure tractions, both of which will provide a toughening incre-
ent. However, putting this concept into practice poses several

hallenges and has resulted in a wide range of materials with
ome interesting properties. This brief review will consider some

icro- and nano-scale ductile particle CMCs, concentrating on

he toughening increments achieved, before considering other
roperties, principally thermal shock and wear resistance, and
oncluding with an outlook for these materials.

ig. 2. Work of rupture parameter as a function of plastic deformation of the
etallic phase (adapted from Ref. [7]).

d
o
r
r
t
t
d
i
o
w
a
i
d
i
t
l
(
o

ramic Society 28 (2008) 1543–1550

. Micro-scale ductile particle ceramic matrix
omposites

For an advancing crack to be attracted to an inclusion, rather
han repelled by it, the elastic modulus of the inclusion must be
ower than that of the matrix; clearly this is not a problem for

ost engineering ceramic/metal combinations. From Eq. (1), the
oughening increment should increase with the volume fraction
f metal particles. There is, however, a limit to the amount of
etallic phase that can be added if the particles are to remain

solated from each other and hence contribute effectively to the
oughening. Further, interconnected metallic particles are likely
o lead to adverse changes in some properties, such as elec-
rical insulation, corrosion resistance, and creep performance.
or example, it has been observed that particle contents over
0 vol% can lead to a substantial increase in the electrical con-
uctivity of the composite.8 Further, the toughening increment
hould increase with the yield strength of the metal and with
he size of the inclusion. However, if the inclusion becomes too
arge then the difference in the coefficients of thermal expansion
f the metal and the ceramic matrix is likely to result in cracking,
hich may lead to an advancing crack being able to by-pass the
article.

Most of the work on micro-scale composites has been con-
erned with alumina matrices, although other systems have been
nvestigated, including glass (with Mo and/or V particles,9 Cu
articles10 and Kovar11), glass-ceramics (with Ag12 and Ti13),
ydroxyapatite (with Ag14), and mullite (with Mo15). With alu-
ina, nickel,16–24 silver,25–29 molybdenum,30–32 copper,33,34

ron35–37and to a lesser extent niobium,32,38 chromium,39 and
hromium–nickel39 alloys were popular choices for the metal
nclusions, as they offered the dual benefits of favourable prop-
rties and compatibility with the matrix.

Conceptually, the simplest way to produce ductile particle
MCs is to blend the two component powders, i.e. the ceramic
nd the metal and then compact and sinter (in a reducing atmo-
phere to prevent oxidation of the metal) or to hot press the
lend. Although this method has been used successfully, there
re several problems to be overcome in terms of producing a
ense, homogenous composite with discrete particles. Hence
ther methods have been investigated included sol–gel,18,19 gas
eduction, e.g.17,22 (i.e. incorporating the metal as on oxide and
educing it in situ) and reaction sintering, e.g.17 Regardless of
he processing method chosen, a major challenge is to control
he strength of the metal–ceramic bond and hence the degree of
ebonding. If the bond is too strong then there will be no debond-
ng and the particle will be almost fully constrained, giving little
pportunity for plastic stretching. However, if the bond is too
eak then the particle will debond from the matrix completely

nd the crack will by-pass the particle and the only toughen-
ng that can be achieved would be that associated with crack
eflection, which does not have the same potential for large
ncreases as plastic deformation. One way to circumnavigate

he problem of the strength of the interface is to produce metal-
ic particles that are mechanically interlocked with the matrix
see Fig. 3). This can be achieved by carefully controlling the
xygen partial pressure during processing in order to ensure it
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Fig. 3. Scanning electron micrograph of an alumina −20 vol% nickel ductile
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Fig. 4. Examples of metallic particles in alumina matrices (a) scanning elec-
tron micrograph showing the necking of a nickel particle (courtesy of Xudong
Sun), (b) scanning electron micrograph showing the necking of an iron particle
(
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article CMC in which the processing conditions have been controlled to produce
rregularly shaped nickel particles which are mechanically interlocked with the

atrix (courtesy of Xudong Sun).

s sufficiently high at the start of the process that the metal wets
he alumina matrix but that it drops in the later stages so that
ny nickel aluminate that has formed is reduced to nickel and
lumina.23

Even if the crack does not by-pass the metallic particle, it is
ot certain that ‘classical’ deformation of the particle to form a
eck prior to rupture will occur. Although this has been observed
n a limited number of cases (see Fig. 4a and b for examples of
pproximations to this behaviour), it is more usual for only par-
ial deformation to take place (Fig. 4c) before some other failure
echanism, such as interface failure occurs. Further, embrit-

lement of the metal can occur during processing such that it
leaves rather than ruptures.

For the full toughening potential of the metallic particles to
e realised the crack would have to meet the particle in the
iddle such the maximum volume of metal was available for

eformation. Also, the particle would need to debond to its
oles to give the maximum gauge length. This would corre-
pond to a u*/r value of 0.5 and hence an approximate value of
= 1.2 (from the data given in Ref. [7]). Clearly, this scenario

s unrealistic in that if a particle debonds from the matrix to
hat extent then it is likely to be pulled out of its socket rather
han deform. A more realistic value upper bound is u*/r = 0.25
hich gives a value of χ = 0.6, which can be used with Eq. (2)

o estimate the maximum toughening increment. However, this
quation assumes that the particles are all the same size, whereas
n practice a size distribution is more likely and using a mean
alue can lead to incorrect estimations, especially if there is
fairly wide particle size distribution.40 Taking these factors

nto account, the increase in fracture toughness that might be
chieved in an alumina −20 vol% nickel composite was calcu-
ated. The mean particle size was 1.6 �m but the effective particle
ize was calculated as 6.3 �m, giving almost a factor of four dif-

erence in the predicted toughening increment. For this specific
omposite, the maximum fracture toughness was calculated to
e ∼8.4 MPa m1/2; an actual fracture toughness of 7.5 MPa m1/2

as measured using a double cantilever beam method, indicating

t
p

o

courtesy of Matthew Aldridge), and (c) extended focus confocal scanning laser
icrograph of limited plastic deformation of an iron particle (courtesy of Paul
rusty).

hat a significant fraction of the potential toughening increment
ad been realised. It should be noted that the estimate is very
uch an upper bound since it is highly unlikely that all of the par-
icles will interact with the crack to achieve the full toughening
otential.

Many authors quote fracture toughness values in the region
f 3–9 MPa m1/2, which equate to ratios of fracture toughness
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In addition to the increase in strength, there are reports of
a change in fracture mode from inter-granular in monolithic
alumina to transgranular in alumina–metal nanocomposites, as

Table 1
Data for alumina–5 vol% metal nanocomposites

Material Strength (MPa) Fracture toughness
(MPa m1/2)

Reference

Al2O3 536 3.6 65

Al2O3–5 vol% Cu 953 4.8
Al2O3 475 3.6 62

Al2O3 - 5 vol% Cr 736 4.0
Al2O3 683 3.5 46

Al2O3–5 vol% Ni 1090 3.5
Al2O3 390 3.6 48

Al2O3–5 vol% Ni 526 4.2
51
ig. 5. Compilation of R-curve behaviour measured for a number of different
uctile particle CMCs; the data are taken from the references in parentheses.

f the composite to that of the monolithic matrix in the range
lightly over 1–3. Most of these values have been derived from
ndentation crack lengths. However, as mentioned previously,
hese composites would be expected to show R-curve behaviour.

hen R-curves are provided, it is clear that considerable crack
engths are needed to achieve the higher levels of toughness and
ven then the full potential of the ductile particles is not being
xploited in many cases (see Fig. 5).

There have been attempts to add two types of second phase
articles in the anticipation that there will be some synergy
etween the toughening mechanisms. Thus, both silver and
irconia have been added to alumina.41–44 In the work of
uan and Chen,41–43 although an increase in toughness was
chieved, in the early studies the toughening increment was less
han the sum of the increments expected for the two mech-
nisms acting separately. In the composite containing both
oughening agents the zirconia particles failed to transform,
s the silver inclusions, which were embedded in the zirconia
ggregates, absorbed the transformation stresses. Subsequent
mprovements in the processing to avoid the formation of zir-
onia aggregates did result in composites in which the two
oughening increments were additive but there was no further
ncrease.

. Nanocomposites

Although improvements in toughness were achieved in the
icro-scale ductile particle CMCs, many of the composites had

ow strengths, partially due to the weak bonding between the
nclusions and the matrix, which increased the critical flaw size.
n the early 1990s, Niihara45 and co-workers reported that very
igh strengths could be achieved by incorporating nanometre-
ized ceramic (silicon carbide) particles in ceramic (alumina)
atrices to produce nanocomposites. This led to attempts to
ake ductile particle CMCs with much reduced particle sizes.

t was envisaged that it might be possible to development
eramic–metal nanocomposites which would show improved

racture strength and fracture toughness simultaneously by com-
ining the “nanocomposite effect” with the ductility of the
etallic phase, although it should have been recognised that the

mount of crack bridging that is possible for a very fine scale

A
A
A
A

ramic Society 28 (2008) 1543–1550

etal particle is extremely limited. Again, alumina is the most
ommon matrix and the various metals that have been incor-
orated into alumina include Ni,46–53 Mo,54–56 W,57,58 Fe,59,60

r60–63 Cu,64,65 and Ni–Co.66,67

Alumina–metal nanocomposites can be produced by hot
ressing powder blends of either alumina and metal powders
r alumina and metal oxide powders. In the later case, reduction
f the oxide usually takes place in situ. However, it is always
ifficult to achieve full density whilst maintaining the nanoscale
ature of the metallic phase. These problems, coupled with the
ealth and safety concerns of using very fine powders has led to
he development of other methods, many of which use colloidal
rocessing. These have been reviewed recently by Kaplan and
vishai.68

The different processing routes lead to different microstruc-
ures and in particular the ratio of intra- to inter-granular metallic
articles. The very fine scale metallic particles pin the matrix
rain boundaries and result in composites which have finer
rain sizes than the monolithic matrix material would have if
rocessed under the same conditions. Hence, when trying to
ssess the benefits of incorporating nanoscale metallic parti-
les in ceramic matrices, it is important to compare materials
ith comparable grain sizes. Indeed, in some instances, the

ncrease in strength has been attributed to the grain size effect,
.g.62

Although composites containing relatively high amounts of
anoscale metallic particles have been reported, in general only
relatively small addition is required to produce a significant

mprovement in strength. For example, the flexural strength of
n alumina was increased from ∼320 MPa to over 700 MPa
hrough the inclusion of 0.69 vol% of (<100 nm) molybdenum
articles (and the fracture toughness was increased from 4 to
.3 MPa m1/2)56. Data for some examples of composites contain-
ng 5 vol% metallic nanoparticles are given in Table 1. In each
ase, the value for the parent alumina is included to enable com-
arison and the data are as reported, i.e. without consideration
f grain size refinement.
l2O3 420 3.3
l2O3–5 vol% Ni 530 5.2
l2O3 528 3.2 57

l2O3–5 vol% W 645 3.8
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Fig. 6. Scanning electron micrographs of (a) inter-granular fracture surface of
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lumina and (b) transgranular fracture surface of alumina −5 vol% chromium
anocomposite (reprinted from 62 with permission from Elsevier).

hown in Fig. 6 for an alumina—5 vol% chromium nanocom-
osite. The reasons for this change in fracture mode and
he increased strengths, when they are above the increases
hat would be expected from grain size refinement, are not
lear although the residual stresses resulting from a difference
n coefficient of thermal expansion between the nanoparti-
les and the matrix have been suggested. Interestingly, in the
lumina–chromium system the metal has a coefficient of ther-
al expansion which is less than the alumina (as is the case in

lumina–silicon carbide composites) whereas in most systems
he metal has a larger coefficient of thermal expansion and the
tress states are the reverse of those found in alumina–silicon car-
ide, i.e. the metal exerts compressive hoop stresses and radial
ensile stresses.
. Wear and thermal shock resistance

As well as potentially providing improvements in toughness
nd/or strength, adding metallic particles to a ceramic matrix

a
i

a

ramic Society 28 (2008) 1543–1550 1547

roduces changes to other properties. In general, the metallic
hase is softer and less stiff than the matrix hence the compos-
tes tend to show reduced hardness and Young’s modulus. Also,

etals tend to be better conductors of heat than ceramics and
hus there is the expectation that the composites will have higher
hermal conductivities than the parent matrix materials. Studies
n alumina–nickel24 and alumina–silver27 show that thermal
onductivity is higher for the composite than the matrix mate-
ial, provided that the particles are sufficiently large that their
ontribution outweighs the negative effect of the increased inter-
acial area; the critical sizes were determined to be ∼1.4 �m for
ickel and 2.7 �m for silver.

Improvements in mechanical properties and thermal conduc-
ivity might be expected to be of benefit in wear situations.
lumina containing silver particles has been used as a cutting

ool in laboratory tests on a plain carbon steel.29 The perfor-
ance of the research material was broadly comparable with

hat of a commercially available zirconia toughened alumina
aterial.
In a recent study, the abrasive wear behaviour of alumina–

olybdenum and alumina–niobium composites has been
valuated.32 The composites were formed into pins and abraded
gainst a tungsten carbide–cobalt disc. The alumina–niobium
omposites were more wear resistant than the alumina–
olybdenum ones and reported as being comparable with the

arent alumina. This was attributed to the stronger bonding
nd closer matching of the coefficients of thermal expansion
etween alumina and niobium. However, the cermet discs were
orn significantly by the alumina–niobium composites but not
y the alumina–molybdenum ones. Thus, these studies indicate
hat there is further work to do in evaluating and understanding
ear behaviour and optimising composites before commercial

pplications will be viable.
The thermal shock resistance of ductile particle CMCs can

e superior to that of the monolithic matrix material. Typi-
ally when a dense engineering ceramic is quenched from an
levated temperature there is a range of temperature differen-
ials that do not result in any loss of strength then at a fairly
ell-defined critical temperature differential, �Tc, there is a

ignificant loss of strength, followed by further gradual decline
t increasing temperature differentials. In contrast, ceramics
sed as refractories tend to be porous and have lower initial
trengths but retain a significant fraction of that strength after
uenching without showing an abrupt loss of strength. Stud-
es of hot pressed metal particle toughened alumina matrices
ndicate that the composites behave in a similar manner to mono-
ithic alumina except that the strengths are higher throughout
although only slightly in some cases) and that �Tc is increased
rom 200 ◦C to 300 ◦C for alumina—5 vol% copper34 and
50 ◦C for alumina containing 20 vol% of coarse (11–12 �m)
olybdenum particles31. Other alumina–molybdenum compos-

tes (containing 20 vol% fine (3 �m) particles or 10 vol% (fine
r coarse) particles also showed improvements over monolithic

lumina, but not as marked as for the coarse 20 vol% compos-
te.

A hot pressed alumina–20 vol% iron composite also showed
n improvement in �Tc but a composite made from the same
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ig. 7. Schematic showing the retained strength after quenching for alumina
nd two alumina–20 vol% iron composites (adapted from 36).

owder blend but pressureless sintered was weaker (due to weak
onding) and behaved more like a refractory material showing a
radual loss of strength36 (see Fig. 7). Modelling studies,37 how-
ver, have shown that the superior behaviour of the hot pressed
aterial was not due to the enhanced toughness but more likely

o result from the reduced elastic modulus and higher thermal
onductivity. A similar approach for the alumina–molybdenum
omposites indicated that the increased toughness for the coarse
article composite was a significant factor, although changes in
he other properties did contribute to the overall thermal shock
esistance.31

. Outlook

Before reaching some conclusions about the future for
uctile particle CMCs as structural materials, it is important
o realise that this several topics have not been cov-
red, including the changes to the electromagnetic properties
esulting from the inclusion of micro- and/or nano-scale
etallic particles, the potential for improving the mechani-

al properties of functional matrices and the development of
eramic–metal functional graded materials. All of these top-
cs are beyond the scope of this review but are active areas of
esearch.

Returning to the future prognosis for ductile particle CMCs
s structural materials, it is clear that they do offer a unique
ombination of properties. Traditionally, structural ceramics are
sed in applications involving wear and/or high temperatures
et very few studies have looked at ductile particle CMCs under
hese conditions. Those that have indicate that the composites

ay perform better than the alumina that they would be replac-
ng. Clearly, the microstructures have not been optimised for
hese situations and further work is required in this area. How-
ver, these composites suffer from the problems that beset many
ew materials in that the potential benefits have to outweigh
he drawbacks of more difficult and hence costly processing.
s yet they have not been taken into commercial applications.

ence, ductile particle ceramic matrix composites are more than

cientific curiosities but not yet fully established engineering
aterials.
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